5 research outputs found

    Preprocessing by a Bayesian Single-Trial Event-Related Potential Estimation Technique Allows Feasibility of an Assistive Single-Channel P300-Based Brain-Computer Interface

    Get PDF
    A major clinical goal of brain-computer interfaces (BCIs) is to allow severely paralyzed patients to communicate their needs and thoughts during their everyday lives. Among others, P300-based BCIs, which resort to EEG measurements, have been successfully operated by people with severe neuromuscular disabilities. Besides reducing the number of stimuli repetitions needed to detect the P300, a current challenge in P300-based BCI research is the simplification of system’s setup and maintenance by lowering the number N of recording channels. By using offline data collected in 30 subjects (21 amyotrophic lateral sclerosis patients and 9 controls) through a clinical BCI with N=5 channels, in the present paper we show that a preprocessing approach based on a Bayesian single-trial ERP estimation technique allows reducing N to 1 without affecting the system’s accuracy. The potentially great benefit for the practical usability of BCI devices (including patient acceptance) that would be given by the reduction of the number N of channels encourages further development of the present study, for example, in an online setting

    Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle X in hadronic final states using √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search is presented for a heavy resonance Y decaying into a Standard Model Higgs boson H and a new particle X in a fully hadronic final state. The full Large Hadron Collider run 2 dataset of proton-proton collisions at √ s = 13     TeV collected by the ATLAS detector from 2015 to 2018 is used and corresponds to an integrated luminosity of 139     fb − 1 . The search targets the high Y -mass region, where the H and X have a significant Lorentz boost in the laboratory frame. A novel application of anomaly detection is used to define a general signal region, where events are selected solely because of their incompatibility with a learned background-only model. It is constructed using a jet-level tagger for signal-model-independent selection of the boosted X particle, representing the first application of fully unsupervised machine learning to an ATLAS analysis. Two additional signal regions are implemented to target a benchmark X decay into two quarks, covering topologies where the X is reconstructed as either a single large-radius jet or two small-radius jets. The analysis selects Higgs boson decays into b ¯ b , and a dedicated neural-network-based tagger provides sensitivity to the boosted heavy-flavor topology. No significant excess of data over the expected background is observed, and the results are presented as upper limits on the production cross section σ ( p p → Y → X H → q ¯ q b ¯ b ) for signals with m Y between 1.5 and 6 TeV and m X between 65 and 3000 GeV

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    No full text
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle X in hadronic final states using √s=13 TeV pp collisions with the ATLAS detector

    No full text

    Anomaly detection search for new resonances decaying into a Higgs boson and a generic new particle X in hadronic final states using s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search is presented for a heavy resonance Y decaying into a Standard Model Higgs boson H and a new particle X in a fully hadronic final state. The full Large Hadron Collider run 2 dataset of proton-proton collisions at..
    corecore